3.11.24 \(\int \frac {(a+i a \tan (e+f x))^{9/2}}{(c-i c \tan (e+f x))^{3/2}} \, dx\) [1024]

Optimal. Leaf size=255 \[ -\frac {35 i a^{9/2} \text {ArcTan}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {35 i a^4 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 c^2 f}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f} \]

[Out]

-35*I*a^(9/2)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/2))/c^(3/2)/f+35/2*I*a^4*(
a+I*a*tan(f*x+e))^(1/2)*(c-I*c*tan(f*x+e))^(1/2)/c^2/f+35/6*I*a^3*(c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^
(3/2)/c^2/f+14/3*I*a^2*(a+I*a*tan(f*x+e))^(5/2)/c/f/(c-I*c*tan(f*x+e))^(1/2)-2/3*I*a*(a+I*a*tan(f*x+e))^(7/2)/
f/(c-I*c*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3604, 49, 52, 65, 223, 209} \begin {gather*} -\frac {35 i a^{9/2} \text {ArcTan}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}+\frac {35 i a^4 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 c^2 f}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(9/2)/(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

((-35*I)*a^(9/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(c^(3/2)*f
) - (((2*I)/3)*a*(a + I*a*Tan[e + f*x])^(7/2))/(f*(c - I*c*Tan[e + f*x])^(3/2)) + (((14*I)/3)*a^2*(a + I*a*Tan
[e + f*x])^(5/2))/(c*f*Sqrt[c - I*c*Tan[e + f*x]]) + (((35*I)/2)*a^4*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*T
an[e + f*x]])/(c^2*f) + (((35*I)/6)*a^3*(a + I*a*Tan[e + f*x])^(3/2)*Sqrt[c - I*c*Tan[e + f*x]])/(c^2*f)

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3604

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^{9/2}}{(c-i c \tan (e+f x))^{3/2}} \, dx &=\frac {(a c) \text {Subst}\left (\int \frac {(a+i a x)^{7/2}}{(c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}-\frac {\left (7 a^2\right ) \text {Subst}\left (\int \frac {(a+i a x)^{5/2}}{(c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{3 f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {\left (35 a^3\right ) \text {Subst}\left (\int \frac {(a+i a x)^{3/2}}{\sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{3 c f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f}+\frac {\left (35 a^4\right ) \text {Subst}\left (\int \frac {\sqrt {a+i a x}}{\sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 c f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {35 i a^4 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 c^2 f}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f}+\frac {\left (35 a^5\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 c f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {35 i a^4 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 c^2 f}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f}-\frac {\left (35 i a^4\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2 c-\frac {c x^2}{a}}} \, dx,x,\sqrt {a+i a \tan (e+f x)}\right )}{c f}\\ &=-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {35 i a^4 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 c^2 f}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f}-\frac {\left (35 i a^4\right ) \text {Subst}\left (\int \frac {1}{1+\frac {c x^2}{a}} \, dx,x,\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {c-i c \tan (e+f x)}}\right )}{c f}\\ &=-\frac {35 i a^{9/2} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}-\frac {2 i a (a+i a \tan (e+f x))^{7/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {14 i a^2 (a+i a \tan (e+f x))^{5/2}}{3 c f \sqrt {c-i c \tan (e+f x)}}+\frac {35 i a^4 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 c^2 f}+\frac {35 i a^3 (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 c^2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 9.79, size = 386, normalized size = 1.51 \begin {gather*} -\frac {35 i e^{-i (5 e+f x)} \sqrt {e^{i f x}} \sqrt {\frac {e^{i (e+f x)}}{1+e^{2 i (e+f x)}}} \text {ArcTan}\left (e^{i (e+f x)}\right ) (a+i a \tan (e+f x))^{9/2}}{c \sqrt {\frac {c}{1+e^{2 i (e+f x)}}} f \sec ^{\frac {9}{2}}(e+f x) (\cos (f x)+i \sin (f x))^{9/2}}+\frac {\cos ^4(e+f x) \left (-\frac {4 i \cos (4 f x)}{3 c^2}+\cos (2 f x) \left (\frac {32 i \cos (2 e)}{3 c^2}+\frac {32 \sin (2 e)}{3 c^2}\right )+\sec (e) (36 \cos (e)+i \sin (e)) \left (\frac {i \cos (4 e)}{2 c^2}+\frac {\sin (4 e)}{2 c^2}\right )-\sec (e) \sec (e+f x) \left (\frac {\cos (4 e)}{2 c^2}-\frac {i \sin (4 e)}{2 c^2}\right ) \sin (f x)+\left (-\frac {32 \cos (2 e)}{3 c^2}+\frac {32 i \sin (2 e)}{3 c^2}\right ) \sin (2 f x)+\frac {4 \sin (4 f x)}{3 c^2}\right ) \sqrt {\sec (e+f x) (c \cos (e+f x)-i c \sin (e+f x))} (a+i a \tan (e+f x))^{9/2}}{f (\cos (f x)+i \sin (f x))^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(9/2)/(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

((-35*I)*Sqrt[E^(I*f*x)]*Sqrt[E^(I*(e + f*x))/(1 + E^((2*I)*(e + f*x)))]*ArcTan[E^(I*(e + f*x))]*(a + I*a*Tan[
e + f*x])^(9/2))/(c*E^(I*(5*e + f*x))*Sqrt[c/(1 + E^((2*I)*(e + f*x)))]*f*Sec[e + f*x]^(9/2)*(Cos[f*x] + I*Sin
[f*x])^(9/2)) + (Cos[e + f*x]^4*((((-4*I)/3)*Cos[4*f*x])/c^2 + Cos[2*f*x]*((((32*I)/3)*Cos[2*e])/c^2 + (32*Sin
[2*e])/(3*c^2)) + Sec[e]*(36*Cos[e] + I*Sin[e])*(((I/2)*Cos[4*e])/c^2 + Sin[4*e]/(2*c^2)) - Sec[e]*Sec[e + f*x
]*(Cos[4*e]/(2*c^2) - ((I/2)*Sin[4*e])/c^2)*Sin[f*x] + ((-32*Cos[2*e])/(3*c^2) + (((32*I)/3)*Sin[2*e])/c^2)*Si
n[2*f*x] + (4*Sin[4*f*x])/(3*c^2))*Sqrt[Sec[e + f*x]*(c*Cos[e + f*x] - I*c*Sin[e + f*x])]*(a + I*a*Tan[e + f*x
])^(9/2))/(f*(Cos[f*x] + I*Sin[f*x])^4)

________________________________________________________________________________________

Maple [A]
time = 0.39, size = 409, normalized size = 1.60

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a^{4} \left (315 i \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \left (\tan ^{2}\left (f x +e \right )\right )+105 \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \left (\tan ^{3}\left (f x +e \right )\right )+27 i \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan ^{3}\left (f x +e \right )\right )-3 \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan ^{4}\left (f x +e \right )\right )-105 i \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c -315 \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-393 i \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \tan \left (f x +e \right )-259 \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan ^{2}\left (f x +e \right )\right )+164 \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\right )}{6 f \,c^{2} \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan \left (f x +e \right )+i\right )^{3}}\) \(409\)
default \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a^{4} \left (315 i \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \left (\tan ^{2}\left (f x +e \right )\right )+105 \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \left (\tan ^{3}\left (f x +e \right )\right )+27 i \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan ^{3}\left (f x +e \right )\right )-3 \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan ^{4}\left (f x +e \right )\right )-105 i \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c -315 \ln \left (\frac {c a \tan \left (f x +e \right )+\sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-393 i \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \tan \left (f x +e \right )-259 \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan ^{2}\left (f x +e \right )\right )+164 \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\right )}{6 f \,c^{2} \sqrt {a c \left (1+\tan ^{2}\left (f x +e \right )\right )}\, \sqrt {a c}\, \left (\tan \left (f x +e \right )+i\right )^{3}}\) \(409\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/6/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)*a^4/c^2*(315*I*ln((c*a*tan(f*x+e)+(a*c*(1+tan(f*x
+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)^2+105*ln((c*a*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(
a*c)^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)^3+27*I*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan(f*x+e)^3-3*(a*c*(1
+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan(f*x+e)^4-105*I*ln((c*a*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/
2))/(a*c)^(1/2))*a*c-315*ln((c*a*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*a*c*tan(f*x
+e)-393*I*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan(f*x+e)-259*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2)*tan
(f*x+e)^2+164*(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(a*c)^(1/2)/(tan(f*x+e)+I
)^3

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 979 vs. \(2 (199) = 398\).
time = 0.70, size = 979, normalized size = 3.84 \begin {gather*} -\frac {6 \, {\left (210 \, {\left (a^{4} \cos \left (4 \, f x + 4 \, e\right ) + 2 \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) + i \, a^{4} \sin \left (4 \, f x + 4 \, e\right ) + 2 i \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) + a^{4}\right )} \arctan \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 210 \, {\left (a^{4} \cos \left (4 \, f x + 4 \, e\right ) + 2 \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) + i \, a^{4} \sin \left (4 \, f x + 4 \, e\right ) + 2 i \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) + a^{4}\right )} \arctan \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), -\sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 4 \, {\left (8 \, a^{4} \cos \left (4 \, f x + 4 \, e\right ) + 16 \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) + 8 i \, a^{4} \sin \left (4 \, f x + 4 \, e\right ) + 16 i \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) - 31 \, a^{4}\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 12 \, {\left (24 \, a^{4} \cos \left (4 \, f x + 4 \, e\right ) + 48 \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) + 24 i \, a^{4} \sin \left (4 \, f x + 4 \, e\right ) + 48 i \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) + 35 \, a^{4}\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 105 \, {\left (i \, a^{4} \cos \left (4 \, f x + 4 \, e\right ) + 2 i \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) - a^{4} \sin \left (4 \, f x + 4 \, e\right ) - 2 \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) + i \, a^{4}\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 105 \, {\left (-i \, a^{4} \cos \left (4 \, f x + 4 \, e\right ) - 2 i \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) + a^{4} \sin \left (4 \, f x + 4 \, e\right ) + 2 \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) - i \, a^{4}\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) + 4 \, {\left (8 i \, a^{4} \cos \left (4 \, f x + 4 \, e\right ) + 16 i \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) - 8 \, a^{4} \sin \left (4 \, f x + 4 \, e\right ) - 16 \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) - 31 i \, a^{4}\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 12 \, {\left (-24 i \, a^{4} \cos \left (4 \, f x + 4 \, e\right ) - 48 i \, a^{4} \cos \left (2 \, f x + 2 \, e\right ) + 24 \, a^{4} \sin \left (4 \, f x + 4 \, e\right ) + 48 \, a^{4} \sin \left (2 \, f x + 2 \, e\right ) - 35 i \, a^{4}\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt {a} \sqrt {c}}{-72 \, {\left (i \, c^{2} \cos \left (4 \, f x + 4 \, e\right ) + 2 i \, c^{2} \cos \left (2 \, f x + 2 \, e\right ) - c^{2} \sin \left (4 \, f x + 4 \, e\right ) - 2 \, c^{2} \sin \left (2 \, f x + 2 \, e\right ) + i \, c^{2}\right )} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-6*(210*(a^4*cos(4*f*x + 4*e) + 2*a^4*cos(2*f*x + 2*e) + I*a^4*sin(4*f*x + 4*e) + 2*I*a^4*sin(2*f*x + 2*e) + a
^4)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
+ 2*e))) + 1) + 210*(a^4*cos(4*f*x + 4*e) + 2*a^4*cos(2*f*x + 2*e) + I*a^4*sin(4*f*x + 4*e) + 2*I*a^4*sin(2*f*
x + 2*e) + a^4)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/2*arctan2(sin(2*f*x + 2*e
), cos(2*f*x + 2*e))) + 1) + 4*(8*a^4*cos(4*f*x + 4*e) + 16*a^4*cos(2*f*x + 2*e) + 8*I*a^4*sin(4*f*x + 4*e) +
16*I*a^4*sin(2*f*x + 2*e) - 31*a^4)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 12*(24*a^4*cos(4*f*
x + 4*e) + 48*a^4*cos(2*f*x + 2*e) + 24*I*a^4*sin(4*f*x + 4*e) + 48*I*a^4*sin(2*f*x + 2*e) + 35*a^4)*cos(1/2*a
rctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 105*(I*a^4*cos(4*f*x + 4*e) + 2*I*a^4*cos(2*f*x + 2*e) - a^4*sin
(4*f*x + 4*e) - 2*a^4*sin(2*f*x + 2*e) + I*a^4)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + s
in(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))
 + 1) + 105*(-I*a^4*cos(4*f*x + 4*e) - 2*I*a^4*cos(2*f*x + 2*e) + a^4*sin(4*f*x + 4*e) + 2*a^4*sin(2*f*x + 2*e
) - I*a^4)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(
2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + 4*(8*I*a^4*cos(4*f*x + 4*e) +
 16*I*a^4*cos(2*f*x + 2*e) - 8*a^4*sin(4*f*x + 4*e) - 16*a^4*sin(2*f*x + 2*e) - 31*I*a^4)*sin(3/2*arctan2(sin(
2*f*x + 2*e), cos(2*f*x + 2*e))) + 12*(-24*I*a^4*cos(4*f*x + 4*e) - 48*I*a^4*cos(2*f*x + 2*e) + 24*a^4*sin(4*f
*x + 4*e) + 48*a^4*sin(2*f*x + 2*e) - 35*I*a^4)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sqrt(a)*
sqrt(c)/((-72*I*c^2*cos(4*f*x + 4*e) - 144*I*c^2*cos(2*f*x + 2*e) + 72*c^2*sin(4*f*x + 4*e) + 144*c^2*sin(2*f*
x + 2*e) - 72*I*c^2)*f)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 451 vs. \(2 (199) = 398\).
time = 0.99, size = 451, normalized size = 1.77 \begin {gather*} \frac {105 \, \sqrt {\frac {a^{9}}{c^{3} f^{2}}} {\left (c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + c^{2} f\right )} \log \left (\frac {4 \, {\left (2 \, {\left (a^{4} e^{\left (3 i \, f x + 3 i \, e\right )} + a^{4} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - \sqrt {\frac {a^{9}}{c^{3} f^{2}}} {\left (i \, c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - i \, c^{2} f\right )}\right )}}{a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{4}}\right ) - 105 \, \sqrt {\frac {a^{9}}{c^{3} f^{2}}} {\left (c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + c^{2} f\right )} \log \left (\frac {4 \, {\left (2 \, {\left (a^{4} e^{\left (3 i \, f x + 3 i \, e\right )} + a^{4} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - \sqrt {\frac {a^{9}}{c^{3} f^{2}}} {\left (-i \, c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + i \, c^{2} f\right )}\right )}}{a^{4} e^{\left (2 i \, f x + 2 i \, e\right )} + a^{4}}\right ) - 4 \, {\left (8 i \, a^{4} e^{\left (7 i \, f x + 7 i \, e\right )} - 56 i \, a^{4} e^{\left (5 i \, f x + 5 i \, e\right )} - 175 i \, a^{4} e^{\left (3 i \, f x + 3 i \, e\right )} - 105 i \, a^{4} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{12 \, {\left (c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + c^{2} f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/12*(105*sqrt(a^9/(c^3*f^2))*(c^2*f*e^(2*I*f*x + 2*I*e) + c^2*f)*log(4*(2*(a^4*e^(3*I*f*x + 3*I*e) + a^4*e^(I
*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) - sqrt(a^9/(c^3*f^2))*(I*c^2*
f*e^(2*I*f*x + 2*I*e) - I*c^2*f))/(a^4*e^(2*I*f*x + 2*I*e) + a^4)) - 105*sqrt(a^9/(c^3*f^2))*(c^2*f*e^(2*I*f*x
 + 2*I*e) + c^2*f)*log(4*(2*(a^4*e^(3*I*f*x + 3*I*e) + a^4*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*
sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) - sqrt(a^9/(c^3*f^2))*(-I*c^2*f*e^(2*I*f*x + 2*I*e) + I*c^2*f))/(a^4*e^(2*I*
f*x + 2*I*e) + a^4)) - 4*(8*I*a^4*e^(7*I*f*x + 7*I*e) - 56*I*a^4*e^(5*I*f*x + 5*I*e) - 175*I*a^4*e^(3*I*f*x +
3*I*e) - 105*I*a^4*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))/(c^2*
f*e^(2*I*f*x + 2*I*e) + c^2*f)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(9/2)/(c-I*c*tan(f*x+e))**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 7317 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(9/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^(9/2)/(-I*c*tan(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{9/2}}{{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^(9/2)/(c - c*tan(e + f*x)*1i)^(3/2),x)

[Out]

int((a + a*tan(e + f*x)*1i)^(9/2)/(c - c*tan(e + f*x)*1i)^(3/2), x)

________________________________________________________________________________________